Портал создан при поддержке Федерального агентства по печати и массовым коммуникациям.

АВТОМОБИЛЬ ЗАПРАВЛЯЕТСЯ АЛЮМИНИЕМ

Кандидат технических наук Е. КУЛАКОВ, кандидат технических наук С. СЕВРУК, кандидат химических наук А. ФАРМАКОВСКАЯ.

Человечество, судя по всему, не собирается отказываться от автомобилей. Мало того: автомобильный парк Земли может в скором времени увеличиться примерно вдвое - главным образом за счет массовой автомобилизации Китая.

Энергоустановка на воздушно-алюминиевых элементах занимает лишь часть багажника автомобиля и обеспечивает дальность его пробега до 220 километров.
Принцип действия воздушно-алюминиевого элемента.
Работой энергоустановки на воздушно-алюминиевых элементах управляет микропрецессор.
Малогабаритный воздушно-алюминиевый элемент на солевом электролите может заменить четыре батарейки.
Наука и жизнь // Иллюстрации
Энергоустановка ЭУ 92ВА-240 на воздушно-аллюминиевых элементах.

Между тем несущиеся по дорогам машины выбрасывают в атмосферу тысячи тонн угарного газа - того самого, присутствие которого в воздухе в количестве, большем десятой доли процента, для человека смертельно. А помимо угарного газа - и многие тонны окислов азота и прочих ядов, аллергенов и канцерогенов - продуктов неполного сгорания бензина.

Во всем мире давно ведется поиск альтернатив автомобилю с двигателем внутреннего сгорания. И наиболее реальной из них считается электромобиль (см. "Наука и жизнь" №№ 8, 9, 1978 г.). Первые в мире электромобили были созданы во Франции и в Англии в самом начале 80-х годов прошлого века, то есть на несколько лет раньше, чем автомобили с двигателями внутреннего сгорания (ДВС). И появившийся, например, в 1899 году в России первый самодвижущийся экипаж был именно электрическим.

Тяговый электродвигатель в таких электрических автомобилях получал питание от непомерно тяжелых батарей свинцовых аккумуляторов с энергоемкостью всего лишь около 20 ватт-часов (17,2 килокалории) на килограмм. Значит, для того, чтобы "прокормить" двигатель мощностью в 20 киловатт (27 лошадиных сил) хотя бы в течение часа, требовался свинцовый аккумулятор массой в 1 тонну. Эквивалентное же ему по запасенной энергии количество бензина занимает бензобак емкостью всего в 15 литров. Вот почему лишь с изобретением ДВС производство автомобилей стало быстро расти, а электромобили десятилетиями считались тупиковой ветвью автомобилестроения. И только возникшие перед человечеством экологические проблемы заставили конструкторов вернуться к идее электромобиля.

Сама по себе замена ДВС электродвигателем, конечно, заманчива: при одной и той же мощности электродви гатель и массой полегче, и в управлении проще. Но даже теперь, спустя более чем 100 лет после первого появления автомобильных аккумуляторов, энергоемкость (то есть запасенная энергия) даже самых лучших из них не превышает 50 ватт-часов (43 килокалории) на килограмм. И потому весовым эквивалентом бензобака остаются сотни килограммов аккумуляторных батарей.

Если же учесть необходимость многочасовой зарядки аккумуляторов, ограниченное число циклов заряд-разряд и, как следствие, относительно короткий срок службы, а также проблемы с утилизацией отслуживших батарей, то приходится признать, что на роль массового транспорта аккумуляторный электромобиль пока непригоден.

Настал, однако, момент сказать, что электродвигатель может получать энергию и от другого рода химических источников тока - гальванических элементов. Наиболее известные из них (так называемые батарейки) работают в переносных приемниках и диктофонах, в часах и карманных фонариках. В основе работы такой батарейки, так же, как и любого другого химического источника тока, лежит та или иная окислительно-восстановительная реакция. А она, как известно из школьного курса химии, сопровождается передачей электронов от атомов одного вещества (восстановителя) к атомам другого (окислителя). Такую передачу электронов можно осуществить через внешнюю цепь, например, через лампочку, микросхему или мотор, и тем самым заставить электроны работать.

С этой целью окислительно-восстановительную реакцию проводят как бы в два приема - разбивают ее, так сказать, на две полуреакции, протекающие одновременно, но в разных местах. На аноде восстановитель отдает свои электроны, то есть окисляется, а на катоде окислитель эти электроны принимает, то есть восстанавливается. Сами же электроны, перетекая с катода на анод через внешнюю цепь, как раз и совершают полезную работу. Процесс этот, разумеется, небесконечен, поскольку и окислитель, и восстановитель постепенно расходуются, образуя новые вещества. И в результате источник тока приходится выбрасывать. Можно, правда, непрерывно или время от времени выводить из источника образовавшиеся в нем продукты реакции, а взамен подавать в него все новые и новые реагенты. Они в этом случае выполняют роль топлива, и именно потому такие элементы носят название топливных (см. "Наука и жизнь" № 9, 1990 г.).

Эффективность подобного источника тока определяется прежде всего тем, насколько удачно выбраны для него и сами реагенты, и режим их работы. С выбором окислителя особых проблем нет, поскольку окружающий нас воздух состоит более чем на 20% из прекрасного окислителя - кислорода. Что же касается восстановителя (то есть горючего), то с ним дело обстоит несколько сложнее: его приходится возить с собой. И потому при его выборе приходится прежде всего исходить из так называемого массо-энергетического показателя - полезной энергии, выделяемой при окислении единицы массы.

Наилучшими в этом отношении свойствами обладает водород, вслед за которым идут некоторые щелочные и щелочноземельные металлы, а затем - алюминий. Но газообразный водород пожаро- и взрывоопасен, а под большим давлением способен просачиваться через металлы. Сжижать его можно лишь при очень низких температурах, а хранить - достаточно сложно. Щелочные и щелочноземельные металлы тоже пожароопасны и, кроме того, быстро окисляются на воздухе и растворяются в воде.

У алюминия ни одного из этих недостатков нет. Всегда покрытый плотной пленкой оксида, он при всей своей химической активности почти не окисляется на воздухе. Алюминий сравнительно дешев и нетоксичен, его хранение не создает никаких проблем. Вполне разрешима и задача его введения в источник тока: из металла-горючего изготавливают анодные пластины, которые периодически - по мере их растворения - заменяют.

И, наконец, электролит. Он в данном элементе может быть любым водным раствором: кислотным, щелочным или солевым, поскольку алюминий реагирует и с кислотами, и со щелочами, а при нарушении оксидной пленки растворяется и в воде. Но использовать предпочтительнее щелочной электролит: это проще для проведения второй полуреакции - восстановления кислорода. В кислой среде он восстанавливается тоже, но лишь в присутствии дорогостоящего платинового катализатора. В щелочной же среде можно обойтись куда более дешевым катализатором - оксидом кобальта или никеля или активированным углем, которые вводятся непосредственно в пористый катод. Что же касается солевого электролита, то он обладает меньшей электропроводностью, а выполненный на его основе источник тока - примерно в 1,5 раза меньшей энергоемкостью. Поэтому в мощных автомобильных батареях целесообразно применять щелочной электролит.

У него, однако, тоже есть недостатки, главный из из которых - коррозия анода. Идет она параллельно с основной - токообразующей - реакцией и растворяет алюминий, преобразуя его в алюминат натрия с одновременным выделением водорода. Правда, с мало-мальски ощутимой скоростью эта побочная реакция идет лишь при отсутствии внешней нагрузки, именно потому воздушно-алюминиевые источники тока нельзя - в отличие от аккумуляторов и батареек - долго держать заряженными в режиме ожидания работы. Раствор щелочи в этом случае приходится из них сливать. Но зато при нормальном токе нагрузки побочная реакция почти неощутима и коэффициент полезного использования алюминия достигает 98%. Сам же щелочной электролит отходом при этом не становится: отфильтровав от него кристаллы гидроксида алюминия, этот электролит можно снова заливать в элемент.

Есть в применении щелочного электролита в воздушно-алюминиевом источнике тока и еще один недостаток: в процессе его работы расходуется довольно много воды. Это повышает концентрацию щелочи в электролите и могло бы постепенно изменять электрические характеристики элемента. Существует, однако, такой интервал концентраций, в котором эти характеристики практически не меняются, и если работать именно в нем, то достаточно лишь время от времени добавлять в электролит воду. Отходов в привычном смысле этого слова при работе воздушно-алюминиевого источника тока не образуется. Ведь получаемый при разложении алюмината натрия гидроксид алюминия - это просто белая глина, то есть продукт не только абсолютно чистый экологически, но и весьма ценный как сырье для многих отраслей промышленности.

Именно из него, например, обычно производят алюминий, сначала нагревая до получения глинозема, а затем подвергая расплав этого глинозема электролизу. Поэтому есть возможность организовать замкнутый ресурсосберегающий цикл эксплуатации воздушно-алюминиевых источников тока.

Но гидроксид алюминия обладает и самостоятельной коммерческой ценностью: он необходим при производстве пластмасс и кабелей, лаков, красок, стекол, коагулянтов для очистки воды, бумаги, синтетических ковров и линолеумов. Его используют в радиотехнической и фармацевтической промышленности, при производстве всякого рода адсорбентов и катализаторов, при изготовлении косметики и даже ювелирных изделий. Ведь очень многие искусственные драгоценные камни - рубины, сапфиры, александриты - выполняются на основе оксида алюминия (корунда) с незначительными примесями хрома, титана или бериллия соответственно.

Стоимость "отходов" воздушно-алюминиевого источника тока вполне соизмерима со стоимостью исходного алюминия, а масса их при этом в три раза больше массы исходного алюминия.

Почему же, несмотря на все перечисленные достоинства кислородно-алюминиевых источников тока, они так долго - до самого конца 70-х годов - всерьез не разрабатывались? Всего только потому, что они не были востребованы техникой. И лишь с бурным развитием таких энергоемких автономных потребителей, как авиация и космонавтика, военная техника и наземный транспорт, ситуация изменилась.

Начались разработки оптимальных композиций анод - электролит с высокими энергетическими характеристиками при низких скоростях коррозии, подбирались недорогие воздушные катоды с максимальной электрохимической активностью и большим сроком службы, рассчитывались оптимальные режимы как для длительной эксплуатации, так и для короткого времени работы.

Разрабатывались и схемы энергетических установок, содержащие, кроме собственно источников тока, и ряд вспомогательных систем - подачи воздуха, воды, циркуляции электролита и его очистки, терморегулирования и пр. Каждая из них сама по себе достаточно сложна, и для нормального функционирова ния энергоустановки в целом потребовалась микропроцессорная система управления, которая задает алгоритмы работы и взаимодействия всем остальным системам. Пример построения одной из современных воздушно-алюминиевых установок представлен на рисунке (стр. 63.): на нем толстыми линиями обозначены потоки жидкостей (трубопроводы), а тонкими - информационные связи (сигналы датчиков и команд управления.

В последние годы Московским государственным авиационным институтом (техническим университе том) - МАИ совместно с научно-производственным комплексом источников тока "Альтернативная энергетика" - НПК ИТ "АльтЭН" создан целый функциональный ряд энергетических установок на основе воздушно-алюминиевых элементов. В том числе - экспериментальная установка 92ВА-240 для электромобиля. Ее энергоемкость и, как следствие, пробег электромобиля без подзарядки оказались в несколько раз выше, чем при использовании аккумуляторов - как традиционных (никель-кадмиевых), так и вновь разрабатываемых (серно-натриевых). Некоторые удельные характеристики электромобиля на этой энергоустановке приведены на прилегающей цветной вкладке в сравнении с характеристиками автомобиля и электромобиля на аккумуляторах. Сравнение это, однако, требует пояснений. Дело в том, что для автомобиля учтена лишь масса топлива (бензина), а для обоих электромобилей - масса источников тока в целом. В связи с этим необходимо заметить, что электродвигатель имеет значительно меньший вес, чем бензиновый, не требует трансмиссии и в несколько раз экономнее расходует энергию. Если учесть все это, то окажется, что реальный выигрыш нынешнего автомобиля будет в 2-3 раза меньшим, но все же пока достаточно большим.

Есть у установки 92ВА-240 и другие - чисто эксплуатационные - преимущества. Перезарядка воздушно-алюминиевых батарей вообще не требует электросети, а сводится к механической замене отработанных алюминиевых анодов новыми, на что уходит не более 15 минут. Еще проще и быстрей происходит замена электролита для удаления из него осадка гидроксида алюминия. На "заправочной" станции отработанный электролит подвергают регенерации и используют для повторной заправки электромоби лей, а отделенный от него гидроксид алюминия направляют на переработку.

Помимо электромобильной энергоустановки на воздушно-алюминиевых элементах теми же специалистами создан целый ряд малых энергоустановок (см. "Наука и жизнь" № 3, 1997 г.). Каждую из этих установок можно механически перезаряжать не менее 100 раз, и число это определяется в основном ресурсом работы пористого воздушного катода. А срок хранения этих установок в незаправленном состоянии вообще не ограничен, поскольку потерь емкости при хранении нет - саморазряд отсутствует.

В небольших по мощности воздушно-алюминиевых источниках тока можно использовать для приготовления электролита не только щелочь, но и обычную поваренную соль: процессы в обоих электроли тах протекают аналогично. Правда, энергоемкость солевых источников в 1,5 раза меньше, чем щелочных, но зато пользователю они причиняют гораздо меньше хлопот. Электролит в них получается совершенно безопасным, и работу с ним можно доверить даже ребенку.

Воздушно-алюминиевые источники тока для питания маломощной бытовой техники выпускаются уже серийно, и цена их вполне доступна. Что же касается автомобильной энергоустановки 92ВА-240, то она пока существует только в опытных партиях. Один ее экспериментальный образец номинальной мощностью 6 кВт (при напряжении 110 В) и емкостью 240 ампер-часов стоит около 120 тысяч рублей в ценах 1998 года. По предварительным расчетам, эта стоимость после разворачивания серийного производства снизится по крайней мере до 90 тысяч рублей, что позволит выпускать электромобиль ценою не намного большей, чем автомобиль с двигателем внутреннего сгорания. Что же касается стоимости эксплуатации электромобиля, то она и теперь вполне сопоставима со стоимостью эксплуатации автомобиля.

Дело остается за малым - произвести более глубокую оценку и расширенные испытания, а затем при положительных результатах начинать опытную эксплуатацию.

 

Читайте в любое время

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее

Товар добавлен в корзину

Оформить заказ

или продолжить покупки