Нобелевская премия по физике 2010 года. Новое лицо углерода

Кандидат химических наук Татьяна Зимина.

Нобелевскую премию по физике 2010 года присудили за исследования графена — двумерного материала, проявляющего необычные и одновременно весьма полезные свойства. Его открытие сулит не только новые технологии, но и развитие фундаментальной физики, результатом чего могут стать новые знания о строении материи. Лауреатами Нобелевской премии по физике нынешнего года стали Андре Гейм и Константин Новосёлов — профессора Манчестерского университета (Великобритания), выпускники Московского физико-технического института.

Атомы углерода в графене образуют двумерный кристалл с ячейками гексагональной формы.
Нобелевский лауреат по физике 2010 года Андре Гейм (род. в 1958 году) — профессор Манчестерского университета (Великобритания). Окончил Московский физико-технический институт, кандидатскую диссертацию защитил в Институте физики твёрдого тела (г. Черноголо
Нобелевский лауреат по физике 2010 года Константин Новосёлов (род. в 1974 году) — профессор Манчестерского университета (Великобритания) и выпускник Московского физико-технического института. Работал в Институте проблем технологии микроэлектроники и особо
Графен — одна из аллотропных форм углерода. Впервые был получен поэтапным отшелушиванием тонких слоёв графита. Графен, сворачиваясь, образует нанотрубку или фуллерен.
Одно из возможных применений графена — создание на его основе новой технологии расшифровки химической структуры (секвенирования) ДНК. Учёные из Института наноисследований Кавли (Kavli Institute of nanoscience, Нидерланды) под руководством профессора Декке

Графен, материал толщиной всего в один атом, построен из «сетки» атомов углерода, уложенных, подобно пчелиным сотам, в ячейки гексагональной (шести-угольной) формы. Это ещё одна аллотропная форма углерода наряду с графитом, алмазом, нанотрубками и фуллереном. Материал обладает отличной электропроводностью, хорошей теплопроводностью, высокой прочностью и практически полностью прозрачен.

Идея получения графена «лежала» в кристаллической решётке графита, которая представляет собой слоистую структуру, образованную слабо связанными слоями атомов углерода. То есть графит, по сути, можно представить как совокупность слоёв графена (двумерных кристаллов), соединённых между собой.

Графит — материал слоистый. Именно это свойство нобелевские лауреаты и использовали для получения графена, несмотря на то что теория предсказывала (и предыдущие эксперименты подтверждали), что двумерный углеродный материал при комнатной температуре существовать не может — он будет переходить в другие аллотропные формы углерода, например сворачиваться в нанотрубки или в сферические фуллерены.

Международная команда учёных под руководством Андре Гейма, в которую входили исследователи из Манчестерского университета (Великобритания) и Института проблем технологии микроэлектроники и особо чистых материалов (Россия, г. Черноголовка), получила графен простым отшелушиванием слоёв графита. Для этого на кристалл графита наклеивали обычный скотч, а потом снимали: на ленте оставались тончайшие плёнки, среди которых были и однослойные. (Как тут не вспомнить: «Всё гениальное — просто»!) Позже с помощью этой техники были получены и другие двумерные материалы, в том числе высокотемпературный сверхпроводник Bi-Sr-Ca-Cu-O.

Сейчас такой способ называется «микромеханическим расслоением», он позволяет получать наиболее качественные образцы графена размером до 100 микрон.

Другой замечательной идеей будущих нобелевских лауреатов было нанесение графена на подложку из окиси кремния (SiO2). Благодаря этой процедуре графен стало возможным наблюдать под микроскопом (от оптического до атомно-силового) и исследовать.

Первые же эксперименты с новым материалом показали, что в руках учёных не просто ещё одна форма углерода, а новый класс материалов со свойствами, которые не всегда можно описать с позиций классической теории физики твёрдого тела.

Полученный двумерный материал, будучи полупроводником, обладает проводимостью, как у одного из лучших металлических проводников — меди. Его электроны имеют весьма высокую подвижность, что связано с особенностями его кристаллического строения. Очевидно, что это качество графена вкупе с его нанометровой толщиной делает его кандидатом на материал, который мог бы заменить в электронике, в том числе в будущих быстродействующих компьютерах, не удовлетворяющий нынешним запросам кремний. Исследователи полагают, что новый класс графеновой наноэлектроники с базовой толщиной транзисторов не более 10 нм (на графене уже получен полевой транзистор) не за горами.

Сейчас физики работают над дальнейшим увеличением подвижности электронов в графене. Расчёты показывают, что ограничение подвижности носителей заряда в нём (а значит, проводимости) связано с наличием в SiO2-подложке заряженных примесей. Если научиться получать «свободновисящие» плёнки графена, то подвижность электронов можно увеличить на два порядка — до 2×106 см2.с. Такие эксперименты уже ведутся, и довольно успешно. Правда, идеальная двумерная плёнка в свободном состоянии нестабильна, но если она будет деформирована в пространстве (то есть будет не идеально плоской, а, например, волнистой), то стабильность ей обеспечена. Из такой плёнки можно сделать, к примеру, наноэлектромеханическую систему — высокочувствительный газовый сенсор, способный реагировать даже на одну-единственную молекулу, оказавшуюся на его поверхности.

Другие возможные приложения графена: в электродах суперконденсаторов, в солнечных батареях, для создания различных композиционных материалов, в том числе сверхлёгких и высокопрочных (для авиации, космических аппаратов и т.д.), с заданной проводимостью. Последние могут чрезвычайно сильно различаться. Например, синтезирован материал графан, который в отличие от графена — изолятор (см. «Наука и жизнь» № 4, 2009 г.). Получили его, присоединив к каждому атому углерода исходного материала по атому водорода. Важно, что все свойства исходного материала — графена — можно восстановить простым нагревом (отжигом) графана. В то же время графен, добавленный в пластик (изолятор), превращает его в проводник.

Почти полная прозрачность графена предполагает использование его в сенсорных экранах, а если вспомнить о его «сверхтонкости», то понятны перспективы его применения для будущих гибких компьютеров (которые можно свернуть в трубочку подобно газете), часов-браслетов, мягких световых панелей.

Но любые приложения материала требуют его промышленного производства, для которого метод микромеханического расслоения, используемый в лабораторных исследованиях, не годится. Поэтому сейчас в мире разрабатывается огромное число других способов его получения. Уже предложены химические методы получения графена из микрокристаллов графита. Один из них, к примеру, даёт на выходе графен, встроенный в полимерную матрицу. Описаны также осаждение из газовой фазы, выращивание при высоком давлении и температуре, на подложках карбида кремния. В последнем случае, который наиболее приспособлен к промышленному производству, плёнка со свойствами графена формируется при термическом разложении поверхностного слоя подложки.

Фантастически велика ценность нового материала для развития физических исследований. Как указывают в своей статье, опубликованной в 2008 году в журнале «Успехи физических наук», Сергей Морозов (Институт проблем технологии микроэлектроники и особо чистых материалов РАН), Андре Гейм и Константин Новосёлов, «фактически графен открывает новую научную парадигму — ”релятивистскую” физику твёрдого тела, в которой квантовые релятивистские явления (часть которых не реализуема даже в физике высоких энергий) теперь могут быть исследованы в обычных лабораторных условиях… Впервые в твёрдотельном эксперименте можно исследовать все нюансы и многообразие квантовой электродинамики». То есть речь идёт о том, что многие явления, для изучения которых требовалось строительство огромных ускорителей элементарных частиц, теперь можно исследовать, вооружившись гораздо более простым инструментом — тончайшим в мире материалом.

***

Комментарий специалиста

Мы думали о полевом транзисторе…

Редакция попросила прокомментировать результаты работы нобелевских лауреатов Андре Гейма и Константина Новосёлова их коллегу и соавтора. На вопросы корреспондента «Науки и жизни» Татьяны Зиминой отвечает заведующий лабораторией Института проблем технологии микроэлектроники и особо чистых материалов РАН (г. Черноголовка) Сергей Морозов.

— Как вообще родилась идея получить двумерный углеродный материал? В связи с чем? Ожидали какие-либо необычные свойства у этой формы углерода?

— Первоначально у нас не было цели получить двумерный материал из полуметалла, мы пытались сделать полевой транзистор. Металлы, даже толщиной в один атом, для этого не годятся — в них слишком много свободных электронов. Сначала мы получали счётное число атомных плоскостей с кристалла графита, затем стали делать всё более и более тонкие пластинки, пока не получили одноатомный слой, то есть графен.

Графен давно, с середины ХХ века, рассматривали теоретики. Они же и ввели само название двумерного углеродного материала. Именно графен стал у теоретиков (задолго до его экспериментального получения) отправной точкой для расчёта свойств других форм углерода — графита, нанотрубок, фуллеренов. Он же и наиболее хорошо теоретически описан. Конечно, какие-то эффекты, обнаруженные теперь экспериментально, теоретики просто не рассматривали. Электроны в графене ведут себя подобно релятивистским частицам. Но никому в голову раньше не приходила идея изучать, как будет выглядеть эффект Холла в случае релятивистских частиц. Мы обнаружили новый тип квантового эффекта Холла, который явился одним из первых ярких подтверждений уникальности электронной подсистемы в графене. То же можно сказать о присущем графену парадоксе Клейна, известному из физики высоких энергий. В традиционных полупроводниках или металлах электроны могут туннелировать сквозь потенциальные барьеры, но с вероятностью существенно меньше единицы. В графене электроны (подобно релятивистским частицам) проникают даже сквозь бесконечно высокие потенциальные барьеры безотражательно.

— Почему считалось, что двумерный углеродный материал (графен) будет неустойчив при комнатной температуре? И как тогда его удалось получить?

— Ранние работы теоретиков, в которых показана неустойчивость двумерных материалов, относились к бесконечной идеальной двумерной системе. Более поздние работы показали, что в двумерной системе всё-таки может существовать дальний порядок (который присущ кристаллическим телам. — Прим. ред.) при конечной температуре (комнатная температура для кристалла — достаточно низкая температура). Реальный же графен в подвешенном состоянии всё же, видимо, не идеально плоский, он слегка волнистый — высота поднятий в нём порядка нанометра. В электронный микроскоп эти «волны» не видны, но есть другие их подтверждения.

— Графен — это полупроводник, если я правильно понимаю. Но кое-где я нахожу определение — полуметалл. К какому же классу материалов он относится?

— Полупроводники имеют запрещённую зону определённой ширины. У графена она — нулевая. Так что его можно назвать полупроводником с нулевой запрещённой зоной или же полуметаллом с нулевым перекрытием зон. То есть он занимает промежуточное положение между полупроводниками и полуметаллами.

— Кое-где в популярной литературе упоминается о других двумерных материалах. Пробовала ли ваша группа получить какие-либо из них?

— Буквально через год после получения графена мы получили двумерные материалы из других слоистых кристаллов. Это, например, нитрид бора, некоторые дихалькогениды, высокотемпературный сверхпроводник Bi-Sr-Ca-Cu-O. Они не повторяли свойств графена — одни из них вообще были диэлектриками, другие имели очень низкую проводимость. Многие исследовательские группы в мире занимаются изучением двумерных материалов. Сейчас мы используем нитрид бора в качестве подложки для графеновых структур. Оказалось, это радикально улучшает свойства графена. Также, если говорить о применении графена для создания композитных материалов, нитрид бора здесь один из главных его конкурентов.

— Какие существующие методы получения графена наиболее перспективны?

— На мой взгляд, сейчас существуют два таких основных метода. Первый — это рост на поверхности плёнок некоторых редкоземельных металлов, а также меди и никеля. Затем графен надо перенести на другие подложки, и это уже научились делать. Данная технология переходит в стадию коммерческих разработок.

Другой метод — выращивание на карбиде кремния. Но хорошо бы научиться растить графен на кремнии, на котором построена вся современная электроника. Тогда бы разработка графеновых устройств пошла бы семимильными шагами, поскольку графеновая электроника естественным путём расширила бы функциональные возможности традиционной микроэлектроники.

 

Читайте в любое время

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее

Товар добавлен в корзину

Оформить заказ

или продолжить покупки