Измерение расстояний в мировом пространстве
П. П. Добронравин
Сто лет назад работы астрономов, наконец, увенчались успехом: впервые удалось измерить расстояния до звезд.
Расстояния звездТот способ, которым определяются расстояния до Луны, Солнца и других тел солнечной системы (см. «Наука и жизнь» № 6, 1938) совершенно неприменим для измерения расстояний до звезд. Звезды настолько далеки от нас, что направления к какой-нибудь из них с двух противоположных точек земного шара практически параллельны между собою, и самыми точными инструментами нельзя установить, где эти направления пересекаются. Все базисы, доступные нам на Земле, слишком малы для измерения звездных расстояний, — для этой цели необходимо иметь базис гораздо большей длины. Действительно, снимки одного и того же участка неба, сделанные на двух возможно более далеких друг от друга обсерваториях, оказываются совершенно тождественными.
Но, двигаясь вокруг Солнца, Земля проходит большой путь в пространстве; летом она находится в противоположной стороне от Солнца по отношению к тому месту, где она была зимой. В июне и декабре мы смотрим на небо с двух точек, лежащих на расстоянии в 300 млн. км одна от другой.
Смотря из окна движущегося поезда, мы видим, что далекие предметы как бы стоят на месте, а близкие «бегут» в направлении, противоположном движению поезда. Видимые движения должны наблюдаться и у звезд; вследствие движения Земли каждая звезда должна описывать в течение года маленький эллипс (тем больший, чем меньше расстояние до нее). Однако таких движений звезд не наблюдалось, и еще Коперник, излагая свою теорию строения мира, указывал, что мы не замечаем их из-за больших расстояний звезд.
Астрономы последующих поколений искали видимые движения звезд; телескопы совершенствовались, но все попытки определить расстояния звезд от нас оставались безуспешными.
Около 1725 г. английский астроном Брадлей укрепил неподвижно в стене дома телескоп так, что ежедневно через поле зрения последнего проходила звезда гамма Дракона. Брадлей очень точно определял положение звезды и вскоре заметил видимые смещения ее. Но Дальнейшие наблюдения принесли разочарование: Брадлей открыл не параллакс звезды, а совершенно другое явление — аберрацию света, т. е. видимое отклонение светового луча, происходящее вследствие сложения скорости движения Земли со скоростью света. Было найдено физическое доказательство движения Земли, но расстояния звезд оставались неизвестными.
Очевидно, что гораздо легче заметить смещение звезды, если вблизи нее видна другая звезда, значительно более далекая. Пусть (рис. 1) звезда S1 значительно ближе к нам, чем звезда S2. Когда Земля находится в точке Т1, мы будем видеть обе звезды в одном направлении. Но через полгода Земля перейдет в Т2, на расстояние 300 млн. км от Т\1, и звезды S1 и S2 как бы разойдутся. Измерив видимое расстояние между звездами, т. е. угол S1T2S2, и считая, что звезда S2 очень далека и не испытывает видимого смещения, можно найти угол, под которым с звезды S1 виден радиус орбиты Земли (параллакс звезды), а по нему и расстояние звезды от Земли (напомним, что для Солнца, Луны и планет параллаксом назывался угол, под которым с небесного тела виден радиус земного шара). По такому пути и пошли в дальнейшем астрономы: они стали искать относительное смещение двух звезд, одну из которых по тем или иным соображениям можно было считать близкой к Солнцу.
Сто лет назад работы астрономов, наконец, увенчались успехом: впервые удалось измерить расстояния до звезд. Почти одновременно 3 астронома — Бессель, Гендерсон и В. Струве (первый директор Пулковской обсерватории) — опубликовали найденные ими параллаксы звезд. Наибольший параллакс был найден Гендерсоном для звезды альфа Центавра (находящейся в южном полушарии неба), которая и до сих пор считается ближайшей к нам звездой. Но и ее параллакс равен всего 0",76; видимое смещение ее за полгода равно 1'',52 или углу, под которым шарик диаметром в 1 мм виден с расстояния около 140 м. Параллаксы других звезд еще меньше. Становится понятным, почему так долго их не могли обнаружить.
Параллаксу в 0",76 соответствует расстояние, в 270 тыс. раз большее расстояния от Земли до Солнца, или примерно 4 • 1013 км. Выражать такие расстояния в километрах уже неудобно, слишком мала и «астрономическая единица» — среднее расстояние от Земли до Солнца; пришлось вводить новые единицы. Одна из них «парсек» (от слов «параллакс-секунда») есть расстояние, соответствующее параллаксу в 1". Парсек равен примерно 3,1 • 1013 км.
Свет проходит в секунду 300 тыс. км, следовательно, за год он пройдет 9,5 • 1012 км.
Расстояние это тоже принято за единицу измерения и названо «световым годом». Мы можем сказать, что ближайшая к нам звезда — альфа Центавра — находится на расстоянии 1,3 парсека, или 4,3 световых года. Наблюдая эту звезду, мы видим ее такой, какой она была 4 с лишним года назад.
За первыми определениями параллаксов звезд последовали все новые и новые; особенно успешно пошло дело после развития звездной фотографии. Сейчас звездные параллаксы определяются исключительно фотографическим методом.
Казалось бы, что достаточно сделать два снимка звезды, которую есть основание считать близкой к нам, с интервалом в полгода, определить ее положение относительно слабых, значительно более далеких звезд, чтобы, сравнив эти два снимка, найти параллакс. Однако дело обстоит более сложно. Звезды, которые мы называли неподвижными, несутся в пространстве с большими скоростями, и движение их незаметно нам лишь потому, что они очень далеки от нас. Далее, Земля, кроме вращения вокруг Солнца, движется вместе с ним в пространстве, что также вызывает видимое смещение близких звезд. Для выделения параллактического смещения звезды необходимы по меньшей мере три снимка, сделанные через полгода один после другого. На практике же в течение года делается не три, а больше снимков, с помощью которых и находится параллакс звезды.
В настоящее время удалось определить расстояния примерно 4000 звезд. Чем дальше звезда, чем меньше ее параллакс, тем менее точно удается измерить ее расстояние. Современные методы дают возможность определять параллаксы вплоть до 0",005; меньшие величины уже нельзя считать реальными, они меньше возможных ошибок наблюдения. Параллаксу 0",005 соответствует расстояние в 200 парсек или 650 световых лет; свет, дошедший до нас в 1938 г., вышел от такой звезды в 1288 г.
Но это только самые близкие к нам звезды, наши «соседи». Огромное большинство звезд несравненно более далеки. Как же измерили расстояния до них, если обычный, так называемый тригонометрический метод уже не в состоянии дать ответ?
Определение расстояний по яркости звезд
Освещение уменьшается пропорционально квадрату расстояния от источника света: лампа в 1000 свечей на расстоянии в 10 м освещает так же, как лампа в 10 свечей на расстоянии 1 м. Пользуясь этим законом, мы можем найти действительную яркость звезд, если известно их расстояние до нас. Условились принимать за меру яркости звезды ту видимую яркость, которую звезда имела бы при наблюдении ее с расстояния в 10 парсек, или 32,6 световых лет. Яркость эту называют «абсолютной величиной»1 звезды. Так, «абсолютная величина» нашего Солнца 4,85 звездной величины, т. е. при удалении от него на 10 парсек оно будет видно как слабая звездочка 4,85 величины (самые слабые, еще видимые глазом звезды — 6-й величины). Если бы мы знали абсолютные величины звезд, мы могли бы по их видимым яркостям определять расстояния.
Оказалось, что такая задача разрешима. Для всех звезд, параллаксы которых измерены, можно найти абсолютные величины. Было сделано сопоставление абсолютных величин звезд и их спектров; установлено, что интенсивность некоторых фраунгоферовых линий в спектре зависит от абсолютной величины звезды. Астрономы получили в свои руки могучее орудие; сфотографировав спектр звезды, можно найти ее абсолютную величину, а сравнив эту последнюю с видимой, — найти расстояние звезды.
Например, из измерения спектра и яркости звезды получается, что ее яркость в миллион раз слабее той, которую она имела бы, если бы находилась на расстоянии 10 парсек. Отсюда легко найти расстояние звезды: оно равно 10 • √1 000 000 = 10 000 парсек, или 32 600 световых лет. Параллакс ее равен 0",0001 (величина, которая непосредственно не может быть измерена). Такой способ, способ «спектроскопических параллаксов», годен для измерения каких угодно больших расстояний, лишь бы силы света звезды хватило для получения достаточно хорошего снимка спектра, пригодного для определения ее абсолютной яркости. Современные большие телескопы позволяют фотографировать очень слабые звезды.
Способ «спектроскопических параллаксов» хорош еще тем, что ошибка, полученная при определении расстояния, всегда около 20% и не зависит от самого расстояния, между тем как тригонометрические параллаксы определяются тем хуже, чем дальше звезда: при параллаксе 0",5 ошибка в расстоянии будет порядка 2—5%, при параллаксе 0",01 она может быть в 200%.
В настоящее время известны спектроскопические параллаксы многих тысяч звезд, на основании их сделан ряд весьма существенных выводов о строении нашего звездного мира.
Но работы последнего десятилетия принесли некоторое разочарование и заставили относиться к спектроскопическим параллаксам с большей осторожностью. Дело в том, что закон ослабления света пропорционально квадрату расстояния от его источника справедлив лишь в том случае, если пространство совершенно прозрачно и свет в нем не поглощается. Давно было известно существование областей, занятых темной, несветящейся материей, видимых на фоне более далеких звезд. Это так называемые темные туманности (рис. 2). Сейчас установлено, что темная материя имеется и во всем пространстве, и она ослабляет свет, доходящий к нам от звезд. Очень трудно учесть, насколько ослаблен свет звезды поглощением в темной материи, и всегда есть опасность недооценить или переоценить расстояние до нее. Поэтому при определении расстояний по абсолютной яркости всегда нужно тщательно учесть возможное влияние поглощения света.
Наша звездная система
Остановимся очень кратко на главных результатах, полученных из исследования расстояний до звезд.
Все знают полосу Млечного Пути — слабое сияние, пересекающее небо и особенно хорошо видимое у нас в ясные осенние и зимние вечера. Если навести на Млечный Путь телескоп, то можно убедиться, что это слабое сияние — свет многих миллионов звезд, расположенных настолько тесно, что для глаза они сливаются в общую массу (рис. 3).
Уже из одного вида Млечного Пути можно заключить, что звезды расположены в пространстве не равномерно и не беспорядочно, а по какому-то определенному закону.
Определение расстояний до звезд, с учетом межзвездного поглощения света и с применением статистических методов исследования, дало возможность построить картину окружающей нас звездной вселенной.
Несколько миллиардов звезд, в число которых входит и наше Солнце, образуют в пространстве как бы «чечевицу», диаметр которой раз в 5 больше ее толщины (рис. 4). Размеры чечевицы огромны, — диаметр ее около 30 000 парсек; иными словами, свет идет от одного ее края до другого примерно 100 000 лет. Смотря по направлению плоскости чечевицы, мы видим значительно больше звезд, чем в перпендикулярном направлении, — этим и объясняется полоса Млечного Пути. Солнце лежит не в центре системы, а примерно на 2/3 ее радиуса.
Центр системы расположен в направлении к созвездию Стрельца, там, где видны наиболее яркие «звездные облака» Млечного Пути. Кроме звезд, имеется много облаков темной несветящейся материи, видимой как темные туманности. Но если вблизи такого скопления материи расположена достаточно яркая звезда, — материя отражает ее свет или начинает светиться сама, и вместо темной туманности будет видна светлая. Такова, например, хорошо известная туманность в созвездии Ориона.
Коперник 400 лет назад доказал, что наша Земля лишь одна из планет; теперь мы знаем, что Солнце — одна из многих миллиардов звезд. Естественно возникает вопрос: существует ли только одна наша звездная система или есть много других таких же звездных групп.
Уже давно были известны небесные объекты, сходные по форме с Млечным Путем (как мы его себе представляем), — так называемые спиральные туманности. Самая большая и яркая из них находится в созвездии Андромеды (рис. 5). Смотря на Млечный Путь извне и издалека, мы видели бы его похожим на туманность Андромеды. Но не случайное ли это сходство? Подобна ли туманность Андромеды Млечному Пути?
Еще лет 20 назад такой вопрос вызывал большие споры. Чтобы ответить на него, надо знать размеры туманности Андромеды, что требует знания расстояния до нее.
Сильные телескопы показывают, что туманность Андромеды состоит из звезд, как и многие другие подобные ей по виду туманности. Но быть может это тесные группы звезд, входящие в нашу звездную систему?
Звездные маяки
Давно известны звезды, меняющие свою яркость; такие звезды называются переменными. Причины изменения яркости переменных звезд различны. Среди них есть группа звезд, меняющих яркость строго периодически; причина этого связана с изменениями температуры и радиуса звезды; такие звезды названы цефеидами. Они-то и оказались теми «маяками», с помощью которых удалось определить расстояние до туманности Андромеды.
30 лет назад на Гарвардской обсерватории в Америке было сделано очень важное открытие: было установлено, что между периодом изменения яркости цефеид и их абсолютными яркостями существует определенная зависимость.
Наблюдая цефеиду, легко можно установить период изменения ее блеска и по нему найти ее абсолютную яркость. Сравнивая абсолютную величину с видимой, можно найти расстояние до звезды. Этот способ может быть применен и к слабым звездам, получить спектры которых для определения по ним абсолютных величин уже нельзя.
Среди звезд, видимых в туманности Андромеды и в других наиболее ярких туманностях, нашлось довольно много цефеид. Сравнение их с цефеидами в нашей звездной системе показало, что расстояние до туманности Андромеды около 700 000 световых лет. И отсюда определилась и ее величина: диаметр туманности Андромеды того же порядка, что и нашего Млечного Пути, она должна включать в себя миллиарды звезд.
Другие спиральные туманности находятся от нас дальше, размеры их того же порядка. Следовательно, наша звездная система не одна, есть очень много таких же звездных систем, расположенных далеко от нас.
Нашу звездную систему, систему Млечного Пути, часто называют Галактикой, от греческого слова галактос—молоко. Поэтому далекие звездные системы получили название «внегалактических туманностей», т. е. туманностей, лежащих за пределами нашей звездной системы. Часто называют их далекими галактиками.
Но цефеиды найдены далеко не во всех спиральных туманностях, зато во многих из них были замечены вспышки «новых» звезд. «Новая» звезда — вспышка слабой звездочки, происходящая от каких-то неизвестных пока причин. Вспыхнув, звезда светит ярко довольно короткое время, а затем ее свет снова ослабевает. Исследования «новых» звезд, вспыхивающих в нашей звездной системе, показали, что наибольшая абсолютная яркость их всегда примерно одинакова; такую же абсолютную яркость имели и «новые» звезды, вспыхивавшие в туманности Андромеды. Мы имеем право считать, что все процессы происходят так же и в других туманностях, следовательно, «новые» звезды в момент вспышки должны иметь ту же абсолютную яркость. «Новые» звезды тоже дают способ измерения расстояний далеких звездных систем; результаты определений расстояний по цефеидам и «новым» звездам сходятся достаточно хорошо.
Есть и еще одна возможность оценки расстояний. Самые яркие звезды в нашей и других системах должны быть примерно одинаковы. Следовательно, сравнив самые яркие звезды в двух туманностях, можно сказать, которая из них дальше и во сколько раз; обычно, во избежание ошибок берется 5—10 наиболее ярких звезд туманности, и оценка расстояния делается по ним. Так удалось узнать расстояния до других звездных систем и выяснить их природу и строение. Оказалось, что они тоже весьма сходны с системой Млечного Пути.
Все три описанных метода таят в себе, однако, некоторую опасность. Пространство между звездными системами света не поглощает, но внутри других звездных систем есть такая же темная материя, как и в нашей системе; свет цефеиды или «новой звезды» может быть из-за этого ослаблен, что приведет к преувеличенной оценке расстояния.
Статистические методы
К сожалению, выделить отдельные звезды можно лишь примерно в 10 самых близких туманностях, остальные же туманности, которых известно сейчас много тысяч, слишком далеки. Для определения их расстояний приходится пользоваться значительно менее точными статистическими методами.
По исследованию более близких туманностей установлено, что размеры их и полная абсолютная яркость колеблются сравнительно немного. Считая, что наблюдаемая туманность имеет средние размеры и среднюю яркость, можно по ее видимым размерам и яркости оценить расстояние.
Оценка расстояния по видимым размерам туманности менее точная, чем по видимой яркости; границы туманностей весьма неопределенны. Для более близких туманностей все же пользуются для контроля обоими способами. Расстояния очень далеких туманностей могут быть оценены лишь по видимой яркости этих туманностей.
Нельзя считать, что все внегалактические туманности построены совершенно одинаково, — и размеры и видимая яркость отдельной туманности могут отличаться от средних величин. Оценка расстояния до отдельной туманности может быть в значительной степени ошибочна, но средний результат для большого числа объектов будет близок к истине. В данное время приходится для далеких звездных систем удовольствоваться этим.
«Красное смещение»
Спектр звезды содержит многочисленные темные линии, называемые фраунгоферовыми, которые указывают на присутствие в атмосфере звезды известных химических элементов.
Каждая линия занимает в спектре определенное место, зависящее от длины ее волны. Но место линии может меняться под влиянием разных обстоятельств, из которых наиболее известное и хорошо изученное есть движение звезды по лучу зрения — к нам или от нас. По закону Допплера-Физо линии, соответствующие отдельным химическим элементам, сместятся к фиолетовому концу спектра, если звезда движется к нам, и к красному — при удалении от нас. По величине смещения можно найти скорость звезды относительно наблюдателя.
Спектр внегалактической туманности представляет собой сумму спектров входящих в нее звезд; движение, определенное по спектру туманности, будет движением системы как целого, движением ее центра тяжести. Исследование спектров туманностей показало удивительную вещь: линии в них всегда сильно смещены к красному концу, и если считать, что это смещение вызвано движением, то все внегалактические туманности удаляются от нас c большими скоростями.
В 1929 г. астроном Геббл обнаружил еще более удивительное обстоятельство: смещение линий каждой туманности пропорционально ее расстоянию от нас, далекие туманности имеют бо́льшие (рис. 6) смещения. Таким образом, определив смещение линий в спектре туманности, можно, воспользовавшись результатом Геббла, вычислить ее расстояние. В настоящее время известны у туманностей смещения, соответствующие расстояниям примерно в 100 и 200 млн. световых лет.
Чем вызывается это «красное смещение», пока еще не решено наукой. Несомненно, что здесь, кроме движения, замешаны еще другие влияния, — быть может свойства самого пространства. Но если только для очень далеких внегалактических туманностей пропорциональность наблюдаемого смещения расстоянию не нарушается, явление «красного смещения» дает средство для измерения расстояний предельно далеких звездных систем, свет от которых идет до нас сотни миллионов лет. Световой луч, давший на фотопластинке изображение самой далекой из исследованных внегалактической туманности в 1938 г., вышел из нее тогда, когда на Земле еще не существовало человека.
Комментарии к статье
1 Под «величиной» звезды в астрономии понимается ее яркость, а не линейные размеры.
Статьи по теме
- Измерение расстояний в мировом пространстве
- НАЙДЕНЫ ГРАНИЦЫ ГАЛАКТИКИ
- Сказка о тёмной материи тёмного космоса
Читайте в любое время