Портал создан при поддержке Федерального агентства по печати и массовым коммуникациям.

Фотосинтез — «игра с огнём» для растения

Доктор биологических наук Василий Птушенко

Свет — основа жизни подавляющего большинства растений, если не говорить о немногих растениях-паразитах.

Свет — основа жизни подавляющего большинства растений, если не говорить о немногих растениях-паразитах. Именно свет даёт им энергию для роста, «питает» их, что позволяет называть растения фототрофными (дословно с греческого — питающимися светом) организмами. Однако парадоксальным образом свет одновременно представляет большую опасность для растений. Он несёт настолько «концентрированную» энергию, что она позволяет растению решить все его биосинтетические задачи, осуществить химические реакции, которые не идут сами по себе, но в то же время способен вызвать неконтролируемые разрушительные химические реакции. Почему так получается, и как растение избегает такой опасности?

«Энергетический профиль» химической реакции. Для того чтобы реакция произошла, молекула реагента должна сначала «взобраться» на вершину (хотя, если пользоваться образами, то, скорее, на перевал) энергетического барьера, разделяющего реагент и продукт реакции. Чем больше высота барьера (так называемая энергия активации), тем сложнее молекулам реагента преодолеть его, и тем медленнее будет протекать реакция.

Этот вопрос, поставленный весьма общим образом, можно разбить на несколько более узких. И первые два из них — каким образом свет «питает» растение и как вызывает химические реакции?

Фотохимические реакции

Начать проще со второго вопроса. При химической реакции исходная молекула превращается в другую, в некотором смысле более стабильную (если говорить точнее, в ту, у которой ниже химический потенциал). Конечно, хотя молекулы различаются по своей устойчивости, любая из них, даже молекула очень высокореакционного соединения, в какой-то мере стабильна, иначе бы она вообще не существовала — атомы или, по крайней мере, какие-то группы атомов разлетелись бы, не образовав молекулы. Но почему-то часть таких молекул «выскакивает» из своего устойчивого состояния и «сваливается» в другое устойчивое состояние. Так брызги воды вылетают из стакана, перелетают через край и падают на пол. Причины, подбрасывающие некоторые капли воды до высоты края стакана, бывают разные: стакан может подрагивать, стоя на столике в поезде; брызги вызывает и струя воды или даже отдельные капли, упавшие в стакан с большой высоты. Точно так же и молекула способна подняться из своей «энергетической ямы», соответствующей её устойчивому состоянию, и потом «перевалить через край». Необходимый для этого избыток энергии она может получить от других молекул. Чем выше температура, тем больше энергия всех молекул, и нужный избыток проще получить — поэтому при повышении температуры химические реакции идут быстрее. Другой вариант: молекула поглощает свет и тем самым также приобретает избыточную энергию. Такие химические реакции называются фотохимическими.

Свет — замечательный источник энергии для химических реакций. Один квант видимого света содержит энергию, огромную по сравнению с той характерной энергией, которую имеют молекулы «сами по себе», за счёт теплового движения — примерно в 70—130 раз бoльшую. Вот только проблема: не всякая молекула не всякий свет может поглотить. Чтобы поглощение было возможно, разница энергий между двумя состояниями молекулы должна быть равна энергии кванта света. Для молекул как микроскопических частиц возможны не любые состояния, а только соответствующие определённым, дискретным уровням энергии, то есть молекулу нельзя чуть-чуть возбудить, есть некоторая минимальная величина, на которую молекула может изменить свою энергию. А у многих молекул разница в энергии электронных уровней заметно больше той энергии, которую несёт квант видимого света. Его энергии просто не хватает, чтобы «забросить» молекулу хотя бы на ближайший верхний уровень, в возбуждённое состояние. И лишь у некоторых веществ первый возбуждённый электронный уровень энергии лежит не слишком высоко — настолько, что энергии кванта видимого света хватает, чтобы молекула оказалась на этом уровне. Такие вещества могут поглощать свет, и называют их пигментами...

 

Продолжение статьи читайте в номере журнала

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее

Товар добавлен в корзину

Оформить заказ

или продолжить покупки