Портал создан при поддержке Федерального агентства по печати и массовым коммуникациям.

Глаз-синхротрон

Богдан Проценко, лаборант-исследователь Международного исследовательского института интеллектуальных материалов Южного федерального университета (МИИ ИМ ЮФУ)

Рентгеновская спектроскопия поглощения — один из самых мощных инструментов изучения вещества. Однако до сих пор расшифровка спектров напоминала детектив с открытым финалом.

Рентгеновская спектроскопия поглощения — один из самых мощных инструментов изучения вещества. Однако до сих пор расшифровка спектров напоминала детектив с открытым финалом: учёные тратили месяцы на интерпретацию данных, полагаясь на опыт, интуицию и сложные расчёты. Теперь, благодаря методам, основанным на машинном обучении, этот процесс занимает всего несколько минут.

О том, как научить искусственный интеллект понимать, а не угадывать химию, рассказывает Богдан Проценко, лаборант-исследователь Международного исследовательского института интеллектуальных материалов Южного федерального университета (МИИ ИМ ЮФУ).

Беседу ведёт Наталия Лескова.


Макет строящейся установки СИЛА (СИнхротрон + ЛАзер). Она объединит в себе сразу две установки: лазер на свободных электронах (с энергией 6 ГэВ) и синхротрон. За макетом — Богдан Проценко. Фото Назара Чубкова.

— Богдан Олегович, что такое рентгеновская спектроскопия и зачем она нужна?

— Это метод исследования вещества. У физиков, как у детей: чтобы понять, что внутри, надо вещь или сломать, или воздействовать на неё чем-то, и уже по результату, отклику делать выводы. Чтобы понять, что арбуз сладкий, достаточно просто похлопать по нему. А вот когда мы переходим к атомам и молекулам, мельчайшим деталям их строения и функционирования, к тому, как вообще устроена материя вокруг нас и почему она такая, а не какая-то другая — всё становится намного сложнее. Нет там «правды», которую можно увидеть глазами: размеры систем много меньше длины волны видимого света, а энергии процессов много больше. Дифракционный предел (который также называют критерием Рэлея или критерием Аббе) ограничивает минимальные размеры того, что можно увидеть. Но если взять длины волн, сопоставимые с размерами атомов и расстояниями между ними, то мы обойдём этот предел и окажемся в рентгеновском диапазоне.

Когда мы светим на вещество рентгеновским излучением, оно рассеивается либо с сохранением энергии, упруго, как говорят физики, либо неупруго, теряя или приобретая энергию после рассеивания. Первый вариант называется дифракцией — это отличный метод исследовать структуру упорядоченных объектов, например кристаллов. Рассеянное на кристаллической решётке рентгеновское излучение интерферирует, давая максимумы и минимумы на разных углах отражения. Но для этого нужен дальний порядок расположения атомов. А вот второму варианту, собственно рентгеновской спектроскопии, это уже безразлично.

Мы светим рентгеновским излучением разных энергий на вещество и смотрим, как оно поглощается. Это и есть рентгеновская спектроскопия. По форме зависимости поглощения излучения от его энергии, которая и называется спектром рентгеновского поглощения, можно понять, как в веществе расположены атомы и в каком химическом состоянии они находятся. При буквальном переводе с латыни spectrum — «образ», «душа», что как бы подчёркивает, что спектр отражает некоторые уникальные внутренние особенности объекта.

Идея рентгеновской спектроскопии в общем-то простая: раз рассеяние у нас неупругое, то есть часть излучения поглощается, теряет энергию, — значит, эта энергия на что-то расходуется. А идёт она на то, чтобы выбить электроны в атомах со своих «насиженных» мест и отправить их прочь из атома. Выбитый электрон тратит полученную энергию на то, чтобы преодолеть притяжение атома и затем столкнуться с соседними атомами. Ситуацию, когда излучение выбивает электроны из вещества, мы называем фотоэффектом, выбитый электрон — фотоэлектроном, а такого рода рассеяние на соседях с наложением результатов — интерференцией. В сущности, рентгеновская спектроскопия — это интерференция фотоэлектронов, где интерференционной решёткой служит сама материя. Разного рода интерферометры принадлежат к классу самых точных измерительных приборов, взять хотя бы обсерваторию LIGO, где впервые зафиксировали гравитационные волны...

 

Продолжение статьи читайте в номере журнала

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее

Товар добавлен в корзину

Оформить заказ

или продолжить покупки