ЭНЕРГИЯ ИЗ УСКОРИТЕЛЯ

Кандидат технических наук Л. ЖИЛЯКОВ, Институт высоких температур РАН

Человеческая цивилизация не может ни существовать, ни тем более развиваться без энергии. Сегодня основными ее источниками служат нефть, газ и уголь. По оценкам специалистов, запасы этих ископаемых на исходе, и уже наши внуки могут столкнуться с очень серьезной проблемой нехватки энергии. Поэтому исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция — синтез гелия из дейтерия и трития — миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках и стеллараторах. Однако есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер — ускоритель на встречных пучках.

Кольцевой зал ускорителя У-70 (Протвино). Справа примыкает канал ввода ионов (в данном случае — протонов, ионов водорода Н) первичного источника (синхротрона) в ускоритель. Ускоритель-коллайдер для термоядерного синтеза может иметь гораздо меньшие размеры
Термоядерный синтез в луче лазера требует сооружения циклопических устройств. На снимке — одна из 192 линий исследовательской установки, построенной в Ливерморской национальной лаборатории (США).
Схема установки для термоядерного синтеза в коллайдере. Коллайдер представляет собой пару ускорителей, разгоняющих пучки ионов навстречу друг другу. При столкновении пучков происходит реакция с появлением новых частиц и выделением энергии.



Проблема управляемого термоядерного синтеза — одна из важнейших задач, стоящих перед человечеством. По данным Мирового энергетического совета, разведанных запасов углеводородного топлива на Земле осталось на 50—80 лет. Единственный долгосрочный источник энергии — это ядерная энергия, которая выделяется в процессе деления или синтеза. Между тем эксплуатация атомных электростанций, работающих за счет деления ядер урана, приводит к серьезным экологическим проблемам. Процесс термоядерного синтеза в значительной степени свободен от недостатков, присущих процессу деления. В реакции синтеза не образуется долгоживущих радиоактивных изотопов, топливом для нее служат тяжелые изотопы водорода — дейтерий и тритий. В литре обычной воды содержится примерно 0,03 г дейтерия, но в процессе его реакции выделяется столько же энергии, сколько при сгорании 300 литров бензина! Запасов дейтерия на Земле хватит, чтобы обеспечивать человечество энергией около миллиарда лет. Немаловажно, что производство термоядерного топлива уже сегодня очень недорого: в нынешних условиях цена составила бы 1—2 копейки за киловатт электроэнергии и будет снижаться в дальнейшем.



Кольцевой зал ускорителя У-70 (Протвино). Справа примыкает канал ввода ионов (в данном случае — протонов, ионов водорода Н) первичного источника (синхротрона) в ускоритель. Ускоритель-коллайдер для термоядерного синтеза может иметь гораздо меньшие размеры.



Суммируя сказанное, можно сделать вывод: кто получит управляемую реакцию синтеза, тот практически полностью обеспечит себя энергией. И можно смело утверждать, что решение этой проблемы окупит все затраты.

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

1. Энергия участвующих в реакции ядер должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12—10-13 с·см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию по крайней мере не меньше данной величины.

2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с·см-3. Это условие — так называемый критерий Лоусона — определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3·10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3·1018 пар D—Т. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Схематично термоядерный реактор можно представить в виде некоторого «черного ящика», в который вводятся топливо (дейтерий и тритий) и энергия E1 для его нагрева. Выходят из «ящика» продукты реакции — ?-частицы, нейтроны и выделяющаяся при синтезе энергия Е2, которая должна быть больше затраченной Е1.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ — это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

В настоящее время решение проблемы управляемого синтеза развивается по двум главным направлениям: магнитное удержание плазмы (токамаки, стеллараторы и пр.) и инерциальное удержание (лазерный синтез).



Термоядерный синтез в луче лазера требует сооружения циклопических устройств. На снимке — одна из 192 линий исследовательской установки, построенной в Ливерморской национальной лаборатории (США).

Лазерный синтез методом термоядерных микровзрывов, поджигаемых мощными лазерными импульсами, в последнее время развивается наиболее интенсивно (см. «Наука и жизнь» № 11, 1999 г.). Здесь достигнуты большие успехи в технике сведения лучей, инжектировании топливных капсул, диагностике плазмы и т. п. Дело за малым — требуется лазерная система, обладающая необходимыми параметрами и с энергией импульса 1—10 МДж. А таковой в настоящее время не существует, и, следовательно, пока нет никаких реальных оснований прогнозировать успех данных работ.

Магнитное удержание сводится к попытке получить квазистационарное горение плазмы. Эти методы имеют уже почти полувековую историю. Путем многочисленных экспериментальных исследований найдено, что оптимальными параметрами обладают токамаки — установки, в которых рабочая камера имеет форму баранки. Именно на токамаках удалось наиболее близко подойти к требуемым параметрам термоядерной плазмы. Но здесь необходимо отметить небольшую особенность. Практически весь успех обеспечивается за счет увеличения их размеров. Дело в том, что теория токамаков гласит: время удержания плазмы прямо пропорционально напряженности магнитного поля и квадрату размера установки. Поскольку предел напряженности магнитного поля практически достигнут, остается единственный путь — увеличение размеров. За время существования токамаков их диаметр вырос с 2 до 20 метров. Токамак со вспомогательным оборудованием — это целое предприятие стоимостью сотни миллионов и даже миллиарды долларов. Строительство очередного токамака занимает несколько лет, и после ряда экспериментов на нем следует вывод: требуется установка еще больших размеров. В настоящее время осуществляется международный проект ITER стоимостью более 10 миллиардов долларов. Однако есть сильные сомнения в том, что и это исполинское сооружение сможет дать положительный выход энергии (см. «Наука и жизнь» № 12, 1999 г.).

Мы подошли к очень важной особенности работ по управляемому термоядерному синтезу. Любой проект, независимо от предлагаемого способа удержания плазмы, сегодня оценивается в миллиарды долларов. Установки небольших размеров и меньшей стоимости уже давно себя исчерпали. Во всем мире над проблемой синтеза работают почти 100 тысяч человек, поиском решения занимаются крупнейшие ученые, опытные инженеры и конструкторы. Говорить о том, что в ходе решения были допущены какие-то ошибки, нет абсолютно никаких оснований. И в результате многолетних исследований вся эта армия ученых приходит к однозначному выводу: решение проблемы управляемого синтеза возможно только путем увеличения размеров установок при астрономических затратах на их построение.

Можно привести весьма любопытный пример вполне реального проекта решения задачи. Предлагается огромный, объемом несколько кубических километров, стальной котел наполовину заполнить водой и греть ее взрывами термоядерных зарядов. Автор не берет на себя смелость оценивать целесообразность и экологические последствия реализации подобного проекта. Просто данный пример достаточно наглядно показывает масштабы поисков альтернативных способов использования термоядерной энергии.

В настоящее время взгляды на управляемый термоядерный синтез весьма противоречивы. С одной стороны, он практически не имеет равнозначной альтернативы, на решение проблемы уже затрачены огромные средства, и отступать нельзя. С другой — каждый новый шаг дается путем все больших и больших затрат. Многим странам пришлось отказаться от продолжения исследований ввиду их чрезвычайной дороговизны. Даже самые горячие оптимисты ожидают, что задача может быть решена не раньше середины следующего столетия. Но к тому времени на Земле будут сожжены почти все запасы нефти и газа и, следовательно, человечество ожидает жесточайший сырьевой кризис. А если решение все же не будет найдено?..

Но действительно ли перспективы столь мрачны и человечеству, чтобы избежать их, необходимо идти на баснословные затраты. Может быть, есть более дешевое и доступное решение?

Такой путь есть. И природа уже неоднократно его подсказывала. Еще на заре термоядерных исследований был обнаружен так называемый «пинч-эффект» — сжатие плазменного столба магнитным полем тока разряда. Эффект вызывал выброс нейтронов, служащий признаком реакции синтеза. Было много восторгов, ожидалось быстрое решение проблемы синтеза. Очень эмоционально этот момент обыгран в известном фильме того времени «Девять дней одного года». Но восторги быстро сменились разочарованием: выяснилось, что источником нейтронного выброса была не реакция по всему объему столба плазмы, а небольшие группы быстрых дейтронов (ядер дейтерия). При ускорении электрическими полями, возникающими в плазме при сильных неустойчивостях, дейтроны получали энергию, существенно превышавшую энергию остальных частиц плазмы, и вступали в реакцию синтеза с выходом нейтронов. Такой «отрыв от коллектива» физикам очень не понравился, полученные нейтроны были названы «ложными», и от этого направления поисков отказались. Но ведь реакция синтеза шла!

Еще пример из недавнего прошлого. Многим хорошо запомнилось сенсационное сообщение о «холодном термояде». Однако достаточно быстро выяснилось, что обнаруженный М. Флейшманом и С. Понсом и независимо от них С. Джоунсом эффект очень слаб и не может быть использован для получения энергии (см. «Наука и жизнь» № 6, 1989 г. и № 3, 1990 г.). Наиболее вероятное объяснение обнаруженного эффекта — так называемая «ускорительная модель»: реакция синтеза происходит в результате ускорения дейтронов сильным электрическим полем, возникающим при растрескивании палладия. Опять ускоренные дейтроны!

Обратимся к истории физики. Каким образом была проведена первая реакция ядерного синтеза (Э. Резерфорд, 1919 г.)? Путем бомбардировки ядер азота быстрыми ?-частицами. Каким образом получают ядра трансурановых элементов? Бомбардировкой ядер известных элементов ускоренными частицами.

Путь проведения ядерных реакций на ускорителях совершенно естественен и ни у кого не вызывает сомнений. Уровень энергий ускоренных протонов измеряется уже сотнями гигаэлектронвольт. Для такой техники реакция синтеза дейтерий — тритий или дейтерий — дейтерий с энергией кулоновского барьера 10 кэВ никакой сложности не представляет. Тем не менее возможность осуществления реакции ядерного синтеза путем использования столкновений ускоренных ядер дейтерия и трития до сих пор не исследовалась. И для этого есть весьма существенные основания.

Дело в том, что главная цель термоядерных исследований — получение интенсивной реакции с выделением большого количества энергии, а в ускорителях ядерные реакции происходят практически поштучно. Здесь главное не количество актов реакции, а сам факт ее прохождения. Малая интенсивность ядерных реакций в ускорителях определяется тем, что количество частиц в ускоряемом пучке сравнительно невелико и соответственно их концентрация мала. Конечно, прямое использование современной ускорительной техники для решения проблемы управляемого синтеза бессмысленно. Для нее задача повышения концентрации частиц в пучке ставится, но не как основная; здесь главная задача — достичь максимальной энергии частиц.

А если попытаться сформулировать задачу несколько иначе? Разработать и создать ускоритель на встречных пучках на энергию ускоряемых ионов дейтерия и трития (дейтронов, тритонов) в несколько сот килоэлектронвольт, когда реакция синтеза уже наверняка пойдет, и при плотности частиц в пучке 1014 см-3, когда ее интенсивность будет достаточно велика для практического использования. При современном развитии науки и техники такая задача может быть достаточно быстро решена на ускорителе небольших размеров. Как показывают расчеты, для получения требуемой плотности ионов величина тока в ускорителе должна составлять несколько десятков ампер. Существующие сегодня сильноточные ускорители ионов позволяют получать токи до 106 А при энергии ионов до 106 эВ. Остается задача удержания пучков с такими параметрами. Но и эта задача имеет решение. В современных ускорителях на встречных пучках время удержания измеряется часами! Можно также попытаться построить реактор, в котором столкновения пучков будут носить импульсно-периодический характер. Само столкновение пучков в этом случае будет иметь длительность порядка 10-7— 10-8 секунды, и «удерживать» их потребуется только в течение этого времени. Столкновения могут повторяться с частотой 107— 108 Гц, что будет означать практически непрерывное горение реакции.



Схема установки для термоядерного синтеза в коллайдере. Коллайдер представляет собой пару ускорителей, разгоняющих пучки ионов навстречу друг другу. При столкновении пучков происходит реакция с появлением новых частиц и выделением энергии. Если в ускорителях разогнать ионы дейтерия (D) и трития (Т), то при их взаимодействии пойдет реакция синтеза с образованием a-частиц — ядер гелия-4 (4Не), нейтронов (п) и энергии: D + Т ® 4Не + п + 17,6 МэВ на один акт взаимодействия. Выделяющееся в камере коллайдера тепло можно использовать традиционным способом — для испарения рабочего тела (например, воды) с получением пара высокого давления.

Важнейшее отличие метода встречных пучков от магнитного удержания в том, что размер ускорителя не играет принципиальной роли для достижения условий синтеза. Минимальный размер экспериментальной установки будет определяться только размерами источника ионов с требуемой энергией. А они невелики: источник ионов на несколько сот килоэлектронвольт, применяемый в промышленности (например, для ионной имплантации полупроводников), занимает площадь не более 10 м2 и стоит несколько тысяч долларов. В «нулевом» эксперименте по ядерному синтезу размеры коллайдера (объема, где сталкиваются пучки) могут быть очень малы. Например, при его длине 2 см и диаметре 0,4 см ожидается выделение 25 Вт тепла, то есть удельная мощность установки оказывается 108 Вт/м3 (примерно как у двигателя внутреннего сгорания). Достижение таких параметров и будет означать физическое решение проблемы управляемого термоядерного синтеза. Получение требуемых мощностей — вопрос уже чисто технический. Рабочий объем реактора, скажем, может содержать необходимое количество коллайдеров —«термоядерных ТВЭЛов», тепловыделяющих элементов.

Подобные предложения неоднократно высказывались в научной литературе, однако до исследований, к сожалению, дело так и не дошло. Между тем они предполагают простую экспериментальную проверку, причем на небольшом и недорогом лабораторном стенде. Многие физико-технические проблемы такого эксперимента уже решены. Оценки показывают, что затраты на проведение работ будут в 10—20 тысяч раз меньше, чем на любые другие исследования в этой области. А в случае удачи открывается возможность несравненно более простого решения проблемы управляемого термоядерного синтеза, чем это обещают все те направления, которые разрабатываются в настоящее время.

 

Читайте в любое время

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее

Товар добавлен в корзину

Оформить заказ

или продолжить покупки