ЗАМЕДЛЕННЫЙ СВЕТ
Доктор технических наук А. ГОЛУБЕВ
Весной прошлого года научные и научно-популярные журналы мира сообщили сенсационную новость. Американские физики провели уникальный эксперимент: они сумели понизить скорость света до 17 метров в секунду.
Все знают, что свет распространяется с огромной скоростью - почти 300 тысяч километров в секунду. Точное значение ее величины в вакууме = 299792458 м/с - фундаментальная физическая константа. Согласно теории относительности, это максимально возможная скорость передачи сигнала.
В любой прозрачной среде свет распространяется медленнее. Его скорость v зависит от показателя преломления среды n: v = с/n . Показатель преломления воздуха - 1,0003, воды - 1,33, различных сортов стекла - от 1,5 до 1,8. Одно из самых больших значений показателя преломления имеет алмаз - 2,42. Таким образом, скорость света в обычных веществах уменьшится не более чем в 2,5 раза.
В начале 1999 года группа физиков из Роуландовского института научных исследований при Гарвардском университете (штат Массачусетс, США) и из Стэнфордского университета (штат Калифорния) исследовала макроскопический квантовый эффект - так называемую самоиндуцированную прозрачность, пропуская лазерные импульсы через непрозрачную в обычных условиях среду. Этой средой были атомы натрия, находящиеся в особом состоянии, называемом бозе-эйнштейновским конденсатом. При облучении лазерным импульсом он приобретает оптические свойства, которые уменьшают групповую скорость импульса в 20 миллионов раз по сравнению со скоростью в вакууме. Экспериментаторам удалось довести скорость света до 17 м/с!
Прежде чем описывать сущность этого уникального эксперимента, напомним смысл некоторых физических понятий.
Групповая скорость. При распространении света в среде различают две скорости - фазовую и групповую. Фазовая скорость vф характеризует перемещение фазы идеальной монохроматической волны - бесконечной синусоиды строго одной частоты и определяет направление распространения света. Фазовой скорости в среде соответствует фазовый показатель преломления - тот самый, значения которого измеряются для различных веществ. Фазовый показатель преломления, а следовательно, и фазовая скорость зависят от длины волны. Эта зависимость называется дисперсией; она приводит, в частности, к разложению белого света, проходящего через призму, в спектр.
Но реальная световая волна состоит из набора волн различных частот, группирующихся в некотором спектральном интервале. Такой набор называют группой волн, волновым пакетом или световым импульсом. Эти волны распространяются в среде с различными фазовыми скоростями из-за дисперсии. При этом импульс растягивается, а его форма меняется. Поэтому для описания движения импульса, группы волн как целого, вводят понятие групповой скорости. Оно имеет смысл только в случае узкого спектра и в среде со слабой дисперсией, когда различие фазовых скоростей отдельных составляющих невелико. Для лучшего уяснения ситуации можно привести наглядную аналогию.
Представим себе, что на линии старта выстроились семь спортсменов, одетых в разноцветные майки по цветам спектра: красную, оранжевую, желтую и т. д. По сигналу стартового пистолета они одновременно начинают бег, но "красный" спортсмен бежит быстрее, чем "оранжевый", "оранжевый" - быстрее, чем "желтый", и т. д., так что они растягиваются в цепочку, длина которой непрерывно увеличивается. А теперь представим, что мы смотрим на них сверху с такой высоты, что отдельных бегунов не различаем, а видим просто пестрое пятно. Можно ли говорить о скорости движения этого пятна как целого? Можно, но только в том случае, если оно не очень расплывается, когда разница в скоростях разноцветных бегунов невелика. В противном случае пятно может растянуться на всю длину трассы, и вопрос о его скорости потеряет смысл. Это соответствует сильной дисперсии - большому разбросу скоростей. Если бегунов одеть в майки почти одного цвета, различающиеся лишь оттенками (скажем, от темно-красного до светло-красного), это станет соответствовать случаю узкого спектра. Тогда и скорости бегунов будут различаться ненамного, группа при движении останется достаточно компактной и может быть охарактеризована вполне определенной величиной скорости, которая и называется групповой.
Статистика Бозе-Эйнштейна. Это один из видов так называемой квантовой статистики - теории, описывающей состояние систем, содержащих очень большое число частиц, подчиняющихся законам квантовой механики.
Все частицы - как заключенные в атоме, так и свободные - делятся на два класса. Для одного из них справедлив принцип запрета Паули, в соответствии с которым на каждом энергетическом уровне не может находиться более одной частицы. Частицы этого класса называются фермионами (это электроны, протоны и нейтроны; в этот же класс входят частицы, состоящие из нечетного числа фермионов), а закон их распределения называется статистикой Ферми-Дирака. Частицы другого класса называются бозонами и не подчиняются принципу Паули: на одном энергетическом уровне может скапливаться неограниченное число бозонов. В этом случае говорят о статистике Бозе-Эйнштейна. К бозонам относятся фотоны, некоторые короткоживущие элементарные частицы (например, пи-мезоны), а также атомы, состоящие из четного числа фермионов. При очень низких температурах бозоны собираются на самом низком - основном - энергетическом уровне; тогда говорят, что происходит бозе-эйнштейновская конденсация. Атомы конденсата теряют свои индивидуальные свойства, и несколько миллионов их начинают вести себя как одно целое, их волновые функции сливаются, а поведение описывается одним уравнением. Это дает возможность говорить, что атомы конденсата стали когерентными, подобно фотонам в лазерном излучении. Исследователи из американского Национального института стандартов и технологий использовали это свойство конденсата Бозе-Эйнштейна для создания "атомного лазера" (см. "Наука и жизнь" № 10, 1997 г.).
Самоиндуцированная прозрачность. Это один из эффектов нелинейной оптики - оптики мощных световых полей. Он заключается в том, что очень короткий и мощный световой импульс проходит без ослабления через среду, которая поглощает непрерывное излучение или длинные импульсы: непрозрачная среда становится для него прозрачной. Самоиндуцированая прозрачность наблюдается в разреженных газах при длительности импульса порядка 10-7 - 10-8 с и в конденсированных средах - менее 10-11 c. При этом возникает запаздывание импульса - его групповая скорость сильно уменьшается. Впервые этот эффект был продемонстрирован Мак-Коллом и Ханом в 1967 году на рубине при температуре 4 К. В 1970 году в парах рубидия были получены задержки, соответствующие скоростям импульса, на три порядка (в 1000 раз) меньшим скорости света в вакууме.
Обратимся теперь к уникальному эксперименту 1999 года. Его осуществили Лен Вестергард Хэу, Захари Даттон, Сайрус Берузи (Роуландовский институт) и Стив Харрис (Стэнфордский университет). Они охладили плотное, удерживаемое магнитным полем облако атомов натрия до перехода их в основное состояние - на уровень с наименьшей энергией. При этом выделяли только те атомы, у которых магнитный дипольный момент был направлен противоположно направлению магнитного поля. Затем исследователи охладили облако до температуры менее 435 нК (нанокельвинов, т.е. 0,000000435 К, почти до абсолютного нуля).
После этого конденсат осветили "связующим пучком" линейно поляризованного лазерного света с частотой, соответствующей энергии его слабого возбуждения. Атомы перешли на более высокий энергетический уровень и перестали поглощать свет. В результате конденсат стал прозрачным для идущего следом лазерного излучения. И вот здесь появились очень странные и необычные эффекты. Измерения показали, что при определенных условиях импульс, проходящий через бозе-эйнштейновский конденсат, испытывает задержку, соответствующую замедлению света более чем на семь порядков - в 20 миллионов раз. Скорость светового импульса замедлилась до 17 м/с, а его длина уменьшилась в несколько раз - до 43 микрометров.
Исследователи считают, что, избежав лазерного нагрева конденсата, им удастся еще сильнее замедлить свет - возможно, до скорости нескольких сантиметров в секунду.
Система с такими необычными характеристиками позволит исследовать квантово-оптические свойства вещества, а также создавать различные устройства для квантовых компьютеров будущего, скажем, однофотонные переключатели.
Читайте в любое время