Заглянем в улитку. Слух с точки зрения инженера
Кандидат технических наук Д. МЕРКУЛОВ.
Еще в Древней Греции философ и математик Пифагор Самосский (ок. 580-500 до н.э.) установил, что звук - это распространяющиеся во все стороны колебания воздуха. А вот природа слуха долгое время была тайной за семью печатями (см. "Наука и жизнь" № 4, 2006 г.).
Лишь в середине XIX века, после того как А. Корти описал строение находящейся во внутреннем ухе улитки, которую позже в его честь назвали кортиевым органом, немецкий физик и физиолог Г. Гельмгольц (1821-1894) высказал интересную гипотезу. Он обратил внимание, что во время пения без аккомпанемента начинают резонировать струны стоящего неподалеку рояля. Гельмгольц предположил, что подобным же образом реагируют на звуковые колебания волосковые клетки, покрывающие поверхность базальной (основной) мембраны кортиева органа, то есть каждая из них отзывается на тон определенной высоты.
Гельмгольц интересовался акустикой и как разделом физики. В частности, он изобрел резонаторы, которые используются поныне и известны под названием "фазоинвертор".
Прошло еще почти сто лет, когда ставший впоследствии нобелевским лауреатом венгр Д. Бекеши увлекся анатомией и попытался разобраться в механизме слуха. Он научился делать вскрытия, но поначалу потерпел неудачу: после смерти человека кортиев орган быстро обезвоживается, и исследователю не удавалось проследить поведение базальной мембраны улитки в динамике. В 1928 году Бекеши решил подойти к решению проблемы с другой стороны и построил механическую модель улитки. Чтобы было проще следить за происходящими в улитке процессами, многие детали изобретатель сделал из прозрачных материалов, а мембрану - из резиновой пластины.
Подавая на вход улитки механические звуковые колебания, Бекеши обратил внимание, что вибрации различной частоты вынуждают колебаться разные участки мембраны: высокие тона деформируют ее часть, примыкающую к среднему уху, низкие тона вызывают деформации в дальнем конце. Деформации и возбуждают находящиеся в этих областях рецепторы - волосковые клетки. Подобное свойство мембраны Бекеши назвал эффектом бегущей волны.
Прорывными в области исследования физиологии слуха нужно считать работы группы сотрудников Гарвардского университета (США) под руководством профессора психологии Н. Кьянга. В 1965 году там начали эксперименты по определению параметров сигналов, идущих от кортиева органа в соответствующие отделы полушарий головного мозга.
Исследования проводились на животных и энтузиастах-добровольцах. В волокна слухового нерва им вводили тончайшие электроды. Ученым удалось установить, что в ответ на звуковой раздражитель от улитки через отдельное волокно идут серии импульсов, тем более длинные, чем более высоким был звук. Волокно могло пропускать до 200-300 импульсов в секунду. Поскольку человек способен слышать звуки до 20 000 Гц, следует предположить, что в передаче информации в мозг даже для сигнала одной частоты участвуют множество нервных волокон.
В середине 1970-х годов работы в этом направлении продолжили американцы М. Сакс и Э. Янг из Университета Джона Хопкинса. Они исследовали реакцию слухового нерва на сложные сигналы, в частности на речь. Оказалось, что мозг не только определяет частоту звука, но и получает более обширную информацию по распределению импульсов в серии. Благодаря этому свойству мозга мы можем среди шума улавливать речь или локализовать источник звука в пространстве.
Сделанные открытия позволили прийти к выводу, что кортиев орган совмещает в себе функции анализатора спектра и своеобразного аналого-цифрового преобразователя.
Результаты, достигнутые учеными, позволили создать устройства, дающие возможность слышать абсолютно глухим людям. "Искусственное ухо" преобразует звуковой сигнал в серии импульсов. С помощью вживленных в волокна слухового нерва сверхминиатюрных электродов (их число в наиболее совершенных аппаратах может достигать 22) импульсы передаются в соответствующий отдел коры головного мозга. Пациенты получают возможность распознавать одно- и двусложные слова, что уже обеспечивает довольно устойчивую их связь с внешним миром.
СТАНДАРТЫ ГРОМКОСТИ
В конце 1920-х годов выпускалась масса радиоаппаратуры, оснащенной усилителями низкой, или звуковой, частоты. Однако отсутствовала теоретическая база, которая позволяла бы грамотно подбирать параметры этих усилителей, в частности амплитудно-частотную характеристику, поскольку не было известно, как ухо воспринимает те или иные частоты.
Проблемой занялись специалисты из нью-йоркской Лаборатории Белла. Работами руководил известный акустик Х. Флетчер, сконструировавший первые слуховые аппараты для химического магната А. Дюпона и великого изобретателя Т. Эдисона.
Чтобы установить характер и степень чувствительности уха к различным частотам слышимого диапазона, Флетчер провел широкомасштабные эксперименты. Для испытаний выбирались здоровые молодые мужчины и женщины в возрасте 18-25 лет. В наушниках они слышали сигналы различной частоты и сообщали, при каком звуковом давлении громкость этих сигналов им казалась одинаковой. Чтобы уменьшить субъективные погрешности, каждый тест повторяли по многу раз.
Результаты были оформлены в виде семейства так называемых кривых равной громкости (КРГ). Они показывают чувствительность уха к различным частотам в зависимости от громкости звука. Для характеристики субъективного восприятия громкости ученые предложили особую единицу - фон. Каждой кривой присваивают свое значение в фонах. На частоте 1000 Гц 1 фон = 1 дБ. Возьмем для примера кривую громкостью 40 фон, наиболее комфортной для слуха на этой частоте, где ей соответствует звуковое давление 40 дБ. На частоте, например, 4000 Гц громкость 40 фон = 35 дБ, на частоте 10 000 Гц 40 фон = 50 дБ, а на частоте 80 Гц 40 фон = 80 дБ. После опубликования кривых в 1933 году Международная организация стандартизации (ISO - International Organization for Standardization) рекомендовала использовать их в качестве стандарта.
Как видно, при большой громкости кривые чувствительности имеют более плоский характер, а при низких громкостях разница в чувствительности выше. Инженеры немедленно воспользовались этими характеристиками, и чтобы сделать звучание радиоаппаратуры более естественным, ее снабжали одним или двумя регуляторами тембра. В качестве регуляторов громкости высококачественных усилителей применяли тонкомпенсаторы, которые при малой громкости снижали коэффициент усиления на высоких и средних частотах. Позже появились и более сложные устройства - эквалайзеры.
Высокая чувствительность в диапазонах 1000-5000 Гц имеет важное значение и в теории музыки. Голоса с обертонами, находящимися в этой частотной области, называют высокой певческой формантой. Обладатели таких голосов могут, не напрягаясь, добиться того, что их услышат на самых задних рядах даже очень больших концертных залов.
В 1956 году два американских инженера Д. Робинсон и Р. Дадсон для определения кривых равной громкости использовали два громкоговорителя, что больше соответствовало реальной жизни, когда человек находится в открытом пространстве звукового поля. Семейство КРГ получилось несколько иным, чем у Флетчера, который пользовался наушниками. Новые эксперименты показали, например, меньшую чувствительность уха к низким частотам и позволили построить иной график порога слышимости. Эти кривые служили международным стандартом до 2003 года. Однако выполненные на самом современном техническом уровне аудиометрические измерения в Англии, Германии, Дании, США, Японии показали, что кривые Флетчера ближе к истине, и на их основе разработан действующий стандарт ISO 226:2003.
СЫТОЕ БРЮХО - К МУЗЫКЕ ГЛУХО
По информативности орган слуха не уступает глазам, а подчас и превосходит их. Даже во время сна слух работает - иначе не появился бы в нашем обиходе такой прибор, как будильник.
К сожалению, качество слуха у человека на протяжении жизни ухудшается. К старости верхняя граница слышимого диапазона падает до 7000-8000 Гц. Это лишает многих пожилых людей возможности заниматься профессией, выбранной в молодые годы. Хороший слух важен не только для музыкантов, но и для врачей-терапевтов или механиков по двигателям внутреннего сгорания - они по спектрам звуков определяют состояние человеческого организма и работоспособность машины.
Раннему снижению слуха способствуют те же факторы, которые вызывают атеросклероз, - малоподвижный образ жизни, жирная пища, курение.
Чувствительность к звукам меняется и в течение более коротких промежутков времени. Так, слух заметно ухудшается на 2-3 часа после еды. Вообще, в послеобеденное время снижается общий тонус организма, поскольку в области органов пищеварения скапливается много крови. Музыканты приходят на концерт или гидроакустики заступают на вахту непременно натощак. То же касается и слушателей. Чтобы получить максимум удовольствия от музыкального произведения, его лучше воспринимать на голодный желудок.
У органа слуха есть еще одна интересная особенность. В отличие, скажем, от зрения информация, поступающая в мозг от левого и правого уха, не полностью равноценна. Как правило, у правшей главное ухо - правое (у левшей - наоборот). Это заметно хотя бы по тому, что, например, при разговоре по телефону мы прикладываем трубку именно к правому уху. Если слушать "неправильным" ухом, то возникает определенный психологический дискомфорт. Так же инстинктивно мы поворачиваемся к говорящему шепотом именно тем ухом, которым лучше слышим.
Специалисты объясняют феномен правого уха тем, что сигналы от него поступают в левое полушарие, где находится речевой центр. Сигналы от левого уха поступают сначала в правое полушарие, а оттуда по нервным связям - в левое полушарие, хотя и с крошечной задержкой.
Статьи по теме
Читайте в любое время