Метод измерения поляризации рентгеновского излучения работает!
Экспериментально проверен метод измерения поляризации рентгеновского излучения, теоретические основы которого разработали российские физики.
Международная группа исследователей экспериментально проверила метод обнаружения и измерения поляризации рентгеновского излучения, предложенный три года тому назад и теоретически обоснованный сотрудником НИИЯФ МГУ Николаем Кабачниковым совместно с коллегой из Санкт-Петербургского университета Андреем Казанским, ныне работающим в Испании. Эксперимент проводился в международном исследовательском центре «Elettra Sincrotrone» в Триесте (Италия) на лазере на свободных электронах FERMI. Отчёт об исследовании опубликован на днях в журнале Nature Communications.
Поляризация – это хорошо известное свойство электромагнитного излучения, к которому относятся и рентгеновские лучи, заключающееся в определенной ориентации электромагнитного поля. Если вектор электрического поля волны находится все время в одной плоскости, то говорят о линейной поляризации. Если вектор вращается по окружности, то говорят о круговой поляризации. Вращение может происходить по часовой стрелке, либо против часовой стрелки, соответственно различается право- и лево- поляризованные лучи.
Рентгеновские лучи, имеющие очень малую длину волны, - важный инструмент исследований в различных областях химии, физики, биологии и прикладных наук на атомарном и молекулярном уровне. Чтобы увидеть объект, надо иметь длину волны излучения меньше его размеров. Более длинная волна маленький объект просто огибает из-за дифракции. Для таких исследований разрабатываются специальные очень мощные лазеры, как, например, строящийся в Германии Европейский рентгеновский лазер на свободных электронах (European XFEL).
Для некоторых экспериментов принципиально важна определенная поляризация рентгеновского излучения. Однако традиционные поляриметры и поляризационные фильтры просто не существуют для пучков такой мощности. Именно поэтому так необходим новый метод детектирования и измерения поляризации.
В частности, рентгеновские лучи круговой поляризации – очень удобный инструмент для изучения биологических молекул. Дело в том, что многие биологически важные молекулы могут существовать в двух зеркально-симметричных формах: правой или левой. Это свойство называют хиральностью. Одна из самых больших загадок природы: почему всё живое на Земле состоит из молекул, в состав которых входят аминокислоты только левых форм, а правых – нет. Причем при синтезе аминокислот в лаборатории всегда получается одинаковое количество левых и правых молекул. И наоборот, сахара в живых существах встречаются только правых форм. Существуют теории, связывающие преимущественно правые (или левые) формы молекул живых существ, с происхождением жизни на Земле. А чтобы исследовать это явление, надо использовать излучение с круговой поляризацией, только оно оказывается чувствительным к подобной асимметрии молекул. Возможно, это прольет свет на тайну возникновения жизни на Земле.
Такая особенность нашего организма приводит к различному воздействию на него лекарственных средств с разной хиральностью. Правые и левые молекулы одного и того же вещества обладают, как правило, разной биологической активностью, то есть в зависимости от того, правое ли вещество входит в лекарство или левое, действовать оно будет по-разному. Поскольку до 70% лекарств, продающихся в аптеках, содержат хиральные компоненты, при поиске новых фармацевтических препаратов очень важно уметь различать правые и левые формы молекул. Так что рентгеновские лучи круговой поляризации найдут применение и в фармацевтике.
Интересно, что более 800 молекул, которые используются в парфюмерной промышленности, тоже хиральны. И от того, содержит ли парфюмерный продукт правую молекулу или левую, зависит его запах. Молекула одной ориентации может дать вам приятный аромат, а другая, такая же по составу, – отвратительный запах.
В качестве примера небиологических исследований можно привести изучение асимметрии взаимодействия рентгеновских лучей круговой поляризации с магнетиками, что может помочь в разработке сверхминиатюрных магнитных носителей информации, магнитной памяти для компьютеров.
Предложенный российскими физиками метод измерения поляризации основан на измерении дихроизма, явления разной величины поглощения право- и лево-поляризованного излучения. В природе дихроизм встречается довольно часто и хорошо известен. Например, по-разному поглощает право- и лево- поляризованный свет исландский шпат.
Для измерения степени круговой поляризации рентгеновский импульс лазера на свободных электронах направляют на мишень – атомы гелия. Под воздействием рентгена из атома гелия вырывается электрон и образуется ион. Ион и электрон «помнят» поляризацию рентгена, но мы её не можем увидеть, как не можем увидеть изображение на фотоплёнке до её проявки. Чтобы «проявить» вращение, которое рентгеновский импульс передал системе электрон-ион, мишень одновременно освещают инфракрасными импульсами мощного лазера с известной круговой поляризацией. Дело в том, что инфракрасные лучи гораздо легче и поляризовать, и измерять их поляризацию. Мы можем получить 100-процентно правый или 100-процентно левый поляризованный инфракрасный пучок. Взаимодействие выбитых фотоэлектронов с этим пучком будет зависеть от того совпадает ли их вращение с поляризацией пучка. Узнать о том, вращаются ли поля в рентгеновском пучке и в инфракрасном в одну сторону или в противоположные, можно по тому, как вылетают электроны, каково их распределение по углу вылета. Сравнение эксперимента с теорией позволяет определить степень круговой поляризации рентгеновского пучка.
По материалам European XFEL (Европейского рентгеновского лазера на свободных электронах), НИИЯФ МГУ(1,2)
29 апреля 2014
Статьи по теме: