Нестандартный пульсар

Российские астрофизики обнаружили у нейтронной звезды необычную структуру магнитного поля.

Нейтронная звезда в системе GRO J2058+42 была открыта почти четверть века назад американской обсерваторией Комптон (Compton Gamma-Ray Observatory, CGRO) и относится к особому виду вспыхивающих рентгеновских пульсаров. Их излучение не постоянно и регистрируется только во время вспышек. В данном случае такое поведение связано с наличием звезды-компаньона, принадлежащей классу Be-звезд. Они настолько быстро вращаются, что в плоскости экватора образуется газовый диск из отбрасываемого вещества. При прохождении через него нейтронной звезды вещество падает на ее поверхность, приводя к резкому возрастанию светимости.

Художественное изображение рентгеновского пульсара, на котором показан один из полюсов нейтронной звезды с формирующимся рентгеновским излучением (NASA/CXC/S. Lee). Стрелками показаны разные направления излучения и нго наблюдаемые спектры. Справа внизу приведён спектр с циклотронным поглощением.

Моменты таких вспышек – идеальное время для исследования физических свойств системы. Проблема заключается в том, что такие вспышки происходят довольно редко, и их невозможно достоверно прогнозировать. Поэтому, когда случаются такие события, необходимо оперативно организовать наблюдения на космических обсерваториях.

Весной 2019 года астрофизики из Института космических исследований РАН, МФТИ и Пулковской обсерватории РАН смогли «поймать» момент зарождения новой вспышки от GRO J2058+42 и оперативно организовать серию наблюдений космической рентгеновской обсерваторией NuSTAR (НАСА), обладающей выдающейся комбинацией высокого энергетического разрешения и широчайшего рабочего диапазона энергий.

Они исследовали энергетический спектр звезды — зависимость интенсивности излучения от энергии (частоты) испускаемых фотонов и обнаружили так называемое циклотронное поглощение. Циклотронная частота — частота обращения заряженной частицы (в данном случае электрона) в магнитном поле. В зависимости от условий на этой частоте может наблюдаться либо дополнительное излучение, либо дополнительное поглощение. Именно последнее и обнаружено в спектрах рентгеновских пульсаров, позволяя напрямую измерять их магнитные поля.

Само по себе это не ново, и такие особенности спектров в настоящий момент известны у трех десятков пульсаров. Уникальность сделанного российскими исследователями открытия состоит в том, что в данном случае эта особенность проявляет себя только тогда, когда нейтронная звезда повернута к наблюдателю определенным образом. Возможно, эта звезда станет родоначальником нового семейства пульсаров.

Обнаружить это явление астрофизикам удалось после проведения детальной «томографии» системы. Для этого были сделаны рентгеновские снимки «космического пациента» с десяти ракурсов, и только на одном из них был обнаружен дефицит излучения на энергии около 10 кэВ, что соответствует напряженности магнитного поля 1012 Гаусс. Напомним, что самые сильные магнитные поля на Солнце, наблюдаемые в пятнах, достигают нескольких тысяч Гаусс.

Полученный результат был настолько необычен, что российские исследователи обратились к американским коллегам с предложением провести дополнительные наблюдения, которые бы подтвердили первоначальные выводы. Неоднородности в структуре магнитного поля как обычных, так и нейтронных звезд теоретически были предсказаны и ранее, но открытие российских астрофизиков впервые представило доказательства того, что магнитное поле нейтронной звезды имеет существенно более сложную структуру, чем считалось ранее. Причём она может сохраняться достаточно продолжительное время.

Один из авторов открытия Александр Анатольевич Лутовинов, заместитель директора по научной работе ИКИ РАН отметил: «Одним из фундаментальных вопросов образования и эволюции нейтронных звезд является структура их магнитных полей. С одной стороны, в процессе коллапса должна сохраняться дипольная структура звезды-прародительницы, с другой, мы знаем, что даже у нашего Солнца есть локальные неоднородности магнитного поля, что, например, проявляется в солнечных пятнах. Похожие структуры предсказываются теоретически и в случае нейтронных звезд. Это очень здорово — впервые увидеть их в реальных данных. Теоретики теперь получат новые фактические данные для моделирований, а мы – еще один инструмент для исследования параметров нейтронных звезд».

Результаты исследования опубликованы в журнале The Astrophysical Journal Letters.

Для справки
Нейтронные звезды — сверхплотные космические тела, имеющие радиус около 10 км и массу, достигающую 1,4–2,5 массы Солнца. Рождаются они в результате вспышек сверхновых звезд, в результате которых вещество из-за гравитации сжимается настолько сильно, что электроны фактически сливаются с протонами, образуя нейтроны. В результате получаются огромные массы для столь малых размеров. При сжатии сохраняется магнитный поток, и если величина магнитного поля на поверхности звезды-прародителя была порядка 1 Гс (как, например, на Земле), то после коллапса магнитное поле на поверхности нейтронной звезды достигает величин 1011–1012 Гс

Некоторые нейтронные звезды могут образовывать пару с обычной звездой, вещество которой перетекает на поверхность нейтронной звезды в области магнитных полюсов (подобно тому, как на Земле частицы солнечного ветра «выпадают» в районе магнитных полюсов, образуя всем известное полярное сияние). При этом возникает узкий луч мощного рентгеновского излучения. Когда из-за вращения звезды этот луч направлен на Землю, наблюдатели видят периодический сигнал, как от маяка, – рентгеновский пульсар.

По материалам пресс релиза МФТИ.

6 Ноября 2019

Автор: Алексей Понятов

Источник: Наука и жизнь (nkj.ru)

Читайте также:

Загадочная

ЗагадочнаяНи один другой космический объект не стимулировал развитие астрофизики так, как эта удивительная туманность.

Читать целиком

Случайная статья

Товар добавлен в корзину

Оформить заказ

или продолжить покупки