Старению нашли белковую причину
Возрастное накопление в клетках неправильно свёрнутых белков связывают с аномалиями в белоксинтезирующих машинах.
Старение описывают по-разному, в зависимости от того, рассматриваем ли мы организм в целом, отдельные органы, клетки или спускаемся на уровень молекул. Соответственно, у нас получается целый набор причин старения; если смотреть с точки зрения молекулярной биологии и биохимии, то это и накопление мутаций в ДНК, которые клетка уже не может исправить, и эпигенетические модификации, которые меняют активность генов, и фоновый окислительный стресс, который усиливается из-за того, что антиоксидантные системы начинают работать всё хуже, и появление большого количества неправильно свёрнутых белков.
Конечно, все эти причины тесно связаны друг с другом, кроме того, всегда возникает вопрос, почему так происходит, то есть какие тут есть причины более глубокого порядка. Например, мы сказали про неправильно свёрнутые белки. Известно, что любой белок работает только в нужной пространственной форме: аминокислоты в полипептидной цепи взаимодействуют друг с другом, стягивают и скручивают разные участки белковой молекулы, и в результате белок сворачивается в сложный комок, или сложную нить, или в плоский длинный лист. Но бывает так, что сворачивание идёт неправильно, и белок не только не может выполнять свои прямые обязанности, он порой начинает вредить: в клетке образуются токсичные комплексы неправильно свёрнутых молекул, из-за которых она начинает болеть и в конце концов погибает. Самые знаменитые примеры здесь — это нейродегенеративные заболевания, такие, как болезнь Альцгеймера. Но вообще накопление в клетке неправильно свёрнутых белков (не обязательно имеющих отношение к болезни Альцгеймера и др.) — один из общих признаков старения. Почему они накапливаются?
Причина не обязательно в мутациях, которые заставляют белки сворачиваться неправильно. У клетки есть специальные мусороуборочные системы, которые своевременно избавляют её от подобных белков — с возрастом такие системы всё чаще дают сбой. Другое объяснение — изменения в окислительно-восстановительном потенциале там, где белки сворачиваются, то есть в эндоплазматической сети клетки. Сотрудники Стэнфордского университета предлагают ещё один вариант — в статье в Nature они пишут, что возрастные дефекты в сворачивании (или фолдинге) белковых молекул начинаются ещё во время их синтеза на рибосомах.
Как мы знаем, рибосомы — это такие большие и сложные молекулярные комплексы, которые едут по матричной РНК (мРНК) и собирают из аминокислот полипептидную цепь. Рибосомы читают код белка, скопированный из ДНК в мРНК, и в соответствии с тем, что они прочли, берут ту или иную аминокислоту и соединяют её с предыдущей (там есть много особенностей и тонкостей, которые мы сейчас опустим). По одной мРНК одновременно едет много рибосом, и едут они довольно быстро. Из каждой рибосомы свисает растущая полипептидная цепь, которая по мере роста начинает сворачиваться: синтезируемый белок пытается войти в правильную, функциональную 3D-конформацию.
Исследователи понаблюдали, что происходит с синтезом белка в стареющих дрожжах и червях-нематодах Caenorhabditis elegans. Оказалось, что с возрастом рибосомы начинают периодически тормозить и часто сталкиваются друг с другом (то есть задняя догоняет переднюю). Появление большего числа неправильно свёрнутых белковых молекул связано как раз с рибосомными торможениями и столкновениями: аминокислоты в растущей полипептидной цепи устанавливают неправильные контакты друг с другом. И пусть даже доля неправильно свёрнутых белков будет небольшой — всего около 10% от всех синтезируемых полипептидных цепей, этого уже будет достаточно, чтобы мусороуборочная система перестала с ними справляться и в клетке начали накапливаться нерабочие и опасные белковые молекулы. (Синтез белка идёт на мембранах эндоплазматической сети, так что объяснение с окислительно-восстановительным дисбалансом может дополнять общую картину.)
Поскольку синтез белка на рибосомах (или трансляция) — один из фундаментальнейших процессов жизни, и у всех эукариот, к которым относятся и черви, и дрожжи, и люди, трансляция более или менее похожа, то, скорее всего, в стареющих человеческих клетках происходит то же самое. Правда, здесь возникает другой вопрос: а почему, собственно, рибосомы с возрастом начинают тормозить? Каждая рибосома — огромный комплекс из нескольких специальных РНК и восьми десятков белков, сидящих на этих РНК; кроме того, в трансляции участвуют ещё и другие служебные РНК и белки. Кто из них виноват в замедлении рибосомы и почему? Пока что ответа здесь нет. Однако известно, что если дрожжи приобретают мутации, продлевающие жизнь — а некоторые из таких мутаций хорошо изучены — то дрожжевые рибосомы приходят в норму. Вероятно, с этих мутаций и можно начать расшифровывать механизм старения рибосом.
23 января 2022
Статьи по теме: